Design of a TV Show Recommender Engine and Interface

نویسندگان

  • John Zimmerman
  • Kaushal Kurapati
  • Anna L. Buczak
  • Dave Schaffer
  • Srinivas Gutta
  • Jacquelyn Martino
چکیده

The arrival of PVRs (Personal Video Recorders)—tape less devices that allow for easy navigation and storage of TV content—and the availability of hundreds of TV channels in US homes have made the task of finding something good to watch increasingly difficult. In order to ease this content selection overload problem, we pursued three related research themes. First, we developed a recommender engine that tracks users’ TV-preferences and delivers accurate content recommendations. Second, we designed a user interface that allows easy navigation of selections and easily affords inputs required by the recommender engine. Third, we explored the importance of gaining users’ trust in the recommender by automatically generating explanations for content recommendations. In evaluation with users, our smart interface came out on top beating TiVo’s interface and TV Guide Magazine, in terms of usability, fun, and quick access to TV shows of interest. Further, our approach of combining multiple recommender ratings—resulting from various machine-learning methods—using neural networks has produced very accurate content recommendations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personalization: Improving Ease-of-Use, Trust and Accuracy of a TV Show Recommender

The plethora of content available to TV viewers has become overwhelming creating a need to help the viewers to find the programs that are the most interesting for them to watch. Towards this end we are developing a personalization system that recommends TV shows to users based on the knowledge of their preferences. For a quicker adoption of the personalization system by users, there is a need f...

متن کامل

سیستم پیشنهاد دهنده زمینه‌آگاه برای انتخاب گوشی تلفن همراه با ترکیب روش‌های تصمیم‌گیری جبرانی و غیرجبرانی

Recommender systems suggest proper items to customers based on their preferences and needs. Needed time to search is reduced and the quality of customer’s choice is increased using recommender systems. The context information like time, location and user behaviors can enhance the quality of recommendations and customer satisfication in such systems. In this paper a context aware recommender sys...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

Design a Hybrid Recommender System Solving Cold-start Problem Using Clustering and Chaotic PSO Algorithm

One of the main challenges of increasing information in the new era, is to find information of interest in the mass of data. This important matter has been considered in the design of many sites that interact with users. Recommender systems have been considered to resolve this issue and have tried to help users to achieve their desired information; however, they face limitations. One of the mos...

متن کامل

Personalized Voice Search for Internet TV

In this paper, we discuss various strategies that have helped address the unique set of challenges we have faced in the attempt to provide highly relevant and personalized voice search results to users of our Internet TV (a.k.a. IPTV) system. While movie recommender systems have been heavily studied in the academia [1] as well as in the industry [2], full TV recommender systems are less prevale...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003